AKT1 overexpression in endothelial cells leads to the development of cutaneous vascular malformations in vivo.
نویسندگان
چکیده
BACKGROUND Vascular malformations are clinical disorders in which endothelial cells fail to remodel and/or undergo programmed cell death, leading to abnormal persistence of blood vessels. The abnormal persistence of vessels makes therapy difficult because these lesions are resistant to interventions that are effective against hemangiomas. Akt1 is a serine-threonine protein kinase, which is a key mediator of resistance to programmed cell death. Our objective was to determine whether sustained activation of Akt1 could lead to vascular malformation in mice. OBSERVATIONS We examined the effect of constitutive activation of Akt1 in murine endothelial cells (MS1 cells). Overexpression of active AKT1 in MS1 cells led to the development of vascular malformations, characterized by wide endothelial lumens and minimal investment of smooth muscle surrounding the vessels. The histologic features of these vascular malformations is distinct from ras-transformed MS1 cells (angiosarcoma) and suggest that differing signal abnormalities give rise to human vascular malformations vs malignant vascular tumors. CONCLUSIONS Inhibition of Akt signaling may be useful in the treatment of vascular malformations. Examination of problematic hemangiomas and vascular malformations for the presence of activated Akt or downstream targets of Akt, such as mammalian target of rapamycin (mTOR), may predict response to treatment with Akt inhibitors or rapamycin. This study provides a potential rationale for the systemic and topical use of these inhibitors for vascular malformations and hemangiomas.
منابع مشابه
In vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies
Objective(s): Lung cancer is the main leading cause of cancer death worldwide. Angiogenesis is the main step in proliferation and spreading of tumor cells. Targeting vascular endothelial growth factor (VEGF) is an effective approach for inhibition of cancer angiogenesis. Nanobodies (NBs) are a novel class of antibodies derived from the camel. Unique characteristics of Nbs like their small size ...
متن کاملIn vitro combination therapy of pathologic angiogenesis using anti-vascular endothelial growth factor and anti-neuropilin-1 nanobodies
Objective(s): Emergence of resistant tumor cells to the current therapeutics is the main hindrance in cancer treatment. Combination therapy, which mixes two or more drugs, is a way to overcome resistant problems of cancer cells to current treatments. Nanobodies are promising tools in cancer therapy due to their high affinity as well as high penetration to tumor sites....
متن کاملRadiation-induced expression of platelet endothelial cell adhesion molecule-1 in cerebral endothelial cells
Background: Radiation-induced molecular changes on the endothelial surface of brain arteriovenous malformations (AVM) may be used as markers for specific vascular targeting agents. In this study, we examined the level of expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) on brain endothelial cell surface after radiation treatment, with the aim of targeting the radiation-induc...
متن کاملPhysiological role of adenosine and its receptors in tissue hypoxia-induced
It is well known that the metabolic factors play an important role in the regulation of angiogenesis. Increased metabolic activity leads to decreased oxygen levels and causes tissue hypoxia. Hypoxia starts different signals to stimulate angiogenesis and promotes oxygen delivery to tissues. It has been suggested that released adenosine from hypoxic tissues plays a vital role in angiogenesis. ...
متن کاملTissue-specific conditional CCM2 knockout mice establish the essential role of endothelial CCM2 in angiogenesis: implications for human cerebral cavernous malformations.
Cerebral cavernous malformations (CCM) are vascular malformations of the brain that lead to cerebral hemorrhages. In 20% of CCM patients, this results from an autosomal dominant condition caused by loss-of-function mutations in one of the three CCM genes. High expression levels of the CCM genes in the neuroepithelium indicate that CCM lesions might be caused by a loss of function of these genes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Archives of dermatology
دوره 143 4 شماره
صفحات -
تاریخ انتشار 2007